

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Dr. K China Apparao	Department:	Aeronautical 2017 - 2021 AAE515	
Regulation:	IARE - R16	Batch:		
Course Name:	Heat Transfer	Course Code:		
Semester:	V	Target Value:	60% (1.8)	

Attainment of COs:

Course Outcome		Direct attainment	Indirect attainment	Overall attainment	Observation	
CO 1	Recall the basic concepts of heat transfer fundamentals, mechanisms, temperature field and temperature gradient for various measures of heat transfer rate.		2.4	2.9	Attainment target reached	
CO 2	Classify the general differential equation of heat conduction in Cartesian, Cylindrical and Spherical Coordinate System (Steady and Unsteady) to calculate temperature and heat flux.		2.4	1.2	Attainment target is not reached	
CO 3	Explain different types of boundary conditions applied to heat conduction problems.		2.4	2.9	Attainment target reached	
CO 4	Solve one-dimensional problems with different surfaces and geometries (fins) for which the temperature distribution and heat flow rates are calculated from Fourier's Law.		2.4	2.1	Attainment target reached	
CO 5	Explain the concepts associated with transient heat conduction equation linked with time and temperature applied to environment sudden changes (various geographical location temperatures).		2.3	2.3	Attainment target reached	
CO 6	Utilize the principles associated with convective heat transfer to formulate and calculate the dynamics of temperature field in fluid flow.		2.4	2.3	Attainment target reached	

Action taken report:

CO 2: Remedial classes have been conducted.

Course Coordinator

Mentor

Head of the HOD